Face Recognition Based Rank Reduction SVD Approach
Authors
Abstract:
Standard face recognition algorithms that use standard feature extraction techniques always suffer from image performance degradation. Recently, singular value decomposition and low-rank matrix are applied in many applications,including pattern recognition and feature extraction. The main objective of this research is to design an efficient face recognition approach by combining many techniques to generate efficient recognition results. The implemented facerecognition approach is concentrated on obtaining significant rank matrix via applying a singular value decomposition technique. Measures of dispersion are used to indicate the distribution of data. According to the applied ranks, thereis an adequate reasonable rank that is important to reach via the implemented procedure. Interquartile range, mean absolute deviation, range, variance, and standard deviation are applied to select the appropriate rank. Rank 24, 12, and 6reached an excellent 100% recognition rate with data reduction up to 2 : 1, 4 : 1 and 8 : 1 respectively. In addition, properly selecting the adequate rank matrix is achieved based on the dispersion measures. Obtained results on standard face databases verify the efficiency and effectiveness of the implemented approach.
similar resources
Face Recognition Feature Comparison Based SVD and FFT
SVD and FFT are both the efficient tools for image analysis and face recognition. In this paper, we first study the role of SVD and FFT in both filed. Then the decomposition information from SVD and FFT are compared. Next, a new viewpoint that the singular value matrix contains the illumination information of the image is proposed and testified by the experiments based on the ORL face database ...
full textA New Fast and Efficient HMM-Based Face Recognition System Using a 7-State HMM Along With SVD Coefficients
In this paper, a new Hidden Markov Model (HMM)-based face recognition system is proposed. As a novel point despite of five-state HMM used in pervious researches, we used 7-state HMM to cover more details. Indeed we add two new face regions, eyebrows and chin, to the model. As another novel point, we used a small number of quantized Singular Values Decomposition (SVD) coefficients as feature...
full textLow-Rank and Eigenface Based Sparse Representation for Face Recognition
In this paper, based on low-rank representation and eigenface extraction, we present an improvement to the well known Sparse Representation based Classification (SRC). Firstly, the low-rank images of the face images of each individual in training subset are extracted by the Robust Principal Component Analysis (Robust PCA) to alleviate the influence of noises (e.g., illumination difference and o...
full textRobust face recognition via low-rank sparse representation-based classification
Face recognition has attracted great interest due to its importance in many real-world applications. In this paper, we present a novel low-rank sparse representation-based classification (LRSRC) method for robust face recognition. Given a set of test samples, LRSRC seeks the lowest-rank and sparsest representation matrix over all training samples. Since low-rank model can reveal the subspace st...
full textFace Recognition using an Affine Sparse Coding approach
Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...
full textA New Approach to Face Recognition Using Dual Dimension Reduction
In this paper a new approach to face recognition is presented that achieves double dimension reduction, making the system computationally efficient with better recognition results and out perform common DCT technique of face recognition. In pattern recognition techniques, discriminative information of image increases with increase in resolution to a certain extent, consequently face recognition...
full textMy Resources
Journal title
volume 11 issue Special Issue
pages 39- 50
publication date 2019-07-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023